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The random-walk method of solving the Schrijdingcr equation is reformuiated to allow 
the direct calculation of the difference 6 between a true wavefunction # and a trial wave- 
function &, . For a trial wavefunction from any source the difference 6 may be calculated 
and used to correct the trial wavefunction. Successive calculations offer the possibility of 
further corrections and wavefunctions of unlimited accuracy. The calculation of 6 is illustrat- 
ed for the cases of the particle-in-a-box and the hydrogen atom. Energies are determined 
directly from the random-walk calculations and indirectly from computation of the ex- 
pectation values for the corrected wavefunctions. 

I. INTRODUCTION 

We have described previously [I -31 the use of a random-walk method to solve the 
SchrGdinger equation for several one- to four-electron molecular systems. The method 
is extremely simple. Nevertheless, lengthy computations are required for high accuracy 
in determining wavefunctions and energies for complex molecular systems. 

An additional difficulty is caused by the necessity that nodes in a wavefunction 
must be specified in advance. While nodes may be determined u prim-i by symmetry 
requirements for a few simple systems, symmetry requirements are not sufEcientIy 
restrictive for the determination of nodes in complex systems [2, 41. As pointed out by 
Klein and Pickett [4] nodal surfaces may be obtained from approximate wavefunctions 
and used in calculating improved wavefunctions with the same nodal surfaces, The 
energy determined in this way is then an upper bound to the true energy for the state 
considered. The technique has been found successful in the case of the HA square 131. 
In general, however, optimization of node locations greatly expands the computation 
effort required. 

.We report here a reformulation of the method which allows the direct calculation 
of the difference 6 between a true wavefunction # and a trial wavefunction & for a 
fixed set of node locations. Calculation effort for a specified accuracy in the wavefunc- 
tion or the energy is significantly reduced. This increases the number of node struc- 
tures which can be examined with a given computation effort and facilitates the use 
of the method for complex molecular systems. We note the similar use of trial Fvave- 

425 
0021-9991/79/060425-13802.00/O 

Copyright % 1979 by Academic Press, Ix. 
All rinhis of reproduction in my form rsxrved. 



426 ANDERSON AND FRIEHAUT 

functions in a somewhat-different Monte Carlo method described by Kalos, Levesque 
and Verlet [5]. 

In succeeding sections we describe the method and illustrate its use in applications 
to the simple problems of the particle-in-a-box and the hydrogen atom. Energies are 
derived both from the random-walk calculations and by computation of the expecta- 
tion values of the energy for the corrected wavefunctions. 

II. THE DIFFERENCE 6 

The random-walk method for the direct determination of a wavefunction # consists 
of a simple game designed to simulate the time-dependent Schrodinger equation, 

which is identical in form to the diffusion equation to which a first-order rate term is 
added, 

ac -- = 
at DC2C - kc. (2) 

With the substitution of imaginary time 7 = it/fi Eq. (1) becomes 

(3) 

The equation has solutions at large T of the type 

#(x, T) = i)(x) e-ET (4) 

consisting of a spatial part #(x) multiplying exponentially in time. Integration to large 
7 yields as the spatial part #(x) a solution to the time-independent Schrijdinger 
equation with the eigenvalue E. 

To simulate Eq. (3) [or Eq. (2)] an initial collection of # particles (or psips) is 
caused to diffuse and multiply in a random-walk computation. As time is advanced 
one step AT each psip is moved at random a step Ax in each dimension and caused to 
multiply (or disappear) with a probability dependent on VAT. With adjustments to 
maintain a fixed number of psips the distribution of psips approaches with increasing 
time a fluctuating “steady-state” distribution which corresponds to the lowest-energy 
wavefunction satisfying the time-independent Schrijdinger equation. The process has 
been described in detail in earlier papers [l-3]. 

The calculation of the difference 6 between a true wavefunction # and a trial wave- 
function & is similar. With &, fixed in time we have 
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Substitution for # in E.q. (3) gives 

427 

(6) 

The equation is similar to Eq. (3), containing a diffusion term and a fist-order rate 
term; but, it contains in addition the term in brackets which corresponds to a distri- 
buted source fixed in time but varying with position. The source term may be positive 
or negative. 

It is convenient to define the potential energy V relative to a reference potential 
v ref. Thus, Eq. (6) becomes 

s _ k” 
al- 

-2ELv*8-(v- v,,,)s+s, 

S(x) = [E C”+J, - (V - YE,) $Je]* 

(7) 

The source term S has the desirable property that as &, approaches the true solution 
and Vrer is adjusted to equal the eigenvalue E the term approaches zero. 

The random-walk game for determining 6 is the same as that for determining 4 
directly except that additional psips are fed to the system as required by the source 
term. The 6 psips of an arbitrary initial distribution are moved at random according 
to m = 2047. Each psip is caused to multiply or disappear with a probability 
-VAT. Additional psips are fed to the system with the probability / S / AT at each 
point. The psips fed may be positive- or negative-valued depending on the sign of S. 
When the reference potential is adjusted to maintain a constant net (positive-negative) 
number of psips the distribution approaches in time a steady-state distribution cor- 
responding to that of the function 8. 

In executing such a calculation it is advantageous to make use of a cancellation of 
positive and negative psips occurring at the same point. For multidimensional systems 
it is advantageous to cancel positive and negative psips occurring in the same region 
of space provided each has had time to be representative of a steady-state distribution 
within the region. 

The energy corresponding to a steady-state distribution may be evaluated according 
to 

a+ _ = -(E - Vr,f) # 
a7 

or 

ai3 
z = -(E - v-ref)(#@ + 6). 

Summing for all psips gives 

(9) 

331/31/3-9 

(10) 
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or 

where Ns is the net number of psips and N,, is the equivalent number for t,& . With 
Vrer adjusted to give a constant N8 the energy is given by 

E = T/ref . (12) 

An accurate value of E is obtained from an average of Vrer for a large number of time 
steps. 

Accurate energies may also be obtained by use of the variational principle. An 
upper bound to E is the expectation value (E) given by 

or 

(13) 

(14) 

In many cases, including those in which I,$ is obtained from variational calculations, 
the integrals involving &, only may be obtained analytically. The function 6 may be 
obtained in analytic form by a fit to the psip distribution. If this function is simple the 
integrals involving 6 may, in some cases, be obtained analytically. In other cases it is 
necessary to evaluate these integrals by any one of a variety of numerical methods. The 
integral JSHz+& dx may be obtained directly from the psip distribtion without an 
analytic function for 6. Where 6 is small compared to x),, the integrals J” 6H6dx and 
J 66& are small and need not be evaluated accurately to obtain accurate expectation 
values for the energy. 

The extensions for successive corrections 8, , 6, , 6, ... are similar. In the examples 
given below we have utilized two of the methods of determining energies described 
here. 

III. PARTICLE-IN-A-BOX, WITHOUT &, 

For later comparisons the case of a particle in a one-dimensional box was in- 
vestigated with a calculation of the complete wavefunction $. The trial wavefunction 
was set equal to zero to give no source term. The problem was specified in atomic 
units with fi”/2~ = 4 and a box length L = 1 with a potential energy V = 0 for 
0 < x < L and V = co for x < 0 and x > L. The exact analytic solution is Z/J = 
sin TX/L with the eigenvalue E = n-“/2 = 4.93480. 

Psip positions were restricted to evenly spaced points at interval in x of 0.01 units. 
The random walk was executed with a time step of 0.0001 units and distance steps of 
-0.02, -0.01, 0.00, f0.01, +0.02 with probabilities -L -P * -s- -1 respectively, 163 163 16, I63 162 
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to give (As)” = 0.0001. At each time step each psip with 0 < M < L was allowed to 
multiply to two psips with the probability PB = exp(vr’rer AT) - 1. Psips with s < 0 
or s >, L were caused to disappear. In addition, psips found within the interval 
0 < x < L at the beginning and end of a time step were removed with the cross/ 
recross probability P, described in Ref. [2]. The reference potential Vref was adjusted 
at each time step to maintain the number of psips at approximately 1000. 

The calculation was begun at 7 = 0 with 1000 psips placed at random within the 
box and allowed to proceed to 7 = 0.2 to reach -‘steady-state.” The distribution of 
psips and the values of J’r’ref were accumulated for a time span of 1.0 from r = 0.2 to 
7 = I.2 for the determination of $ and E. The distribution obtained is shown in 
Fig. 1. The average value of Tfref and thus E was 4.9515 with a probable error in 

FIG. 1. Comparison of calculated psip distribution (points) with exact wavefunction (line) for 
the particle-in-a-box. 

sampling of 0.0626 as determined from the variance in E for intervals of 0.1 lime 
units. 

TV. PARTICLE-IN-A-BOW, SAWTOOTH #0 

The difference formulation was investigated first for the particle-in-a-box with the 
sawtooth tria1 wavefunction shown in Fig. 2. The calculation was carried out with the 
same box length, step-sizes, and so forth as described in Section III. The trial f-unction 
was 

tj,, = ZAs, 0 < x < 0.5, 

= 2A(l - x), 0.5 ,( s < I t-15) 
with 

A = 18,000 (16) 
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The expectation value of the energy given by Eq. (I 3) for &, is <E) = 6. 

I I I I I I 1 1 I 

(17) 

Frc. 2. Sawtooth trial wavefunction &, exact wavefunction #, computed 
(points) and exact difference function (line) for particle-in-a-box. 

psip distribution NS 

The source term S consisted of a delta function for negative psips at a rate of 2A 
per unit time at x = 0.5 and a sawtooth function for positive psips at a total rate of 
-&4 Vrl’r per unit time distributed in proportion to & . Pairs of positive and negative 
psips occupying the same position were removed from the system. Multiplication and 
disappearance of psips were treated in the same way as described in Sec. III. The 
reference potential Vrer was adjusted at each time step to maintain the net (positive- 
negative) number of psips at approximately zero. 

The initial distribution was set with 10 each of positive and negative psips at 7 = 0. 
At 7 = 0.2 the system had reached an apparent steady-state with approximately 
500 psips of each type. The energy and psip distributions were evaluated in a time 
span of 1.0 from T = 0.2 to T = 1.2. The calculated distribution (or function 8) is 
compared to the exact value of 6 in Fig. 2. The energy obtained as the average value of 
VXer is 4.9279 + 0.0108 (probable sampling error). 
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V. PARTICLE-IN-A-BOX, SKEW-ED-SINE +!J~ 

The difference formulation was also investigated for the particle-in-a-box with the 
skewed-sine trial wavefunction of Fig. 3 which represents a better approximation to 
the true wavefunction than does the sawtooth function. The trial function was 

with 

#o = ,4 sin(27X-/f.)(l + b.u), 0 .< .Y < L, (18) 

Calculations were carried out for the skewed-sine trjal function with A = 80,000, 
b = 0.1 and A = 400,000, b = 0.02. The procedure was essentially identical to that 
for the sawtooth function with a steady-state time span of one unit and approximately 
1000 particles in each case. The energies obtained as the average values of krref were 
E = 4.9356 + 0.0025 fur b = 0.1 and E = 4.9343 f 0.0004 for b = 0.02. The expec- 
tation values (Ej as given by Eq. (13) for the trial wavefunctions are 4.93933 for 
b = 0.1 and 4.93499 for b = 0.02. Figures 3 and 4 show the calculated difYerence 
functions 6 compared to the exact difference functions given by $ - z,!J~ . 

I I i I I I I I I 

I5 n 

FIG. 3. Skewed-sine trial wavefunction $,, (shown for b = 0.3 to exaggerate the difference for 
clarity), exact wavefunction #, computed psip distribution (points) and exact difference Cmction 
(line) for particle-in-a-box with b = 0.1. 
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RG. 4. Computed psip distribution (points) and exact difference function (line) for skewed- 
sine trial wavefunction with b = 0.02. 

Results for the several treatments of the problem of the particle-in-a-box are listed 
in Table I. It may be seen that use of the difference method greatly increases the 
accuracy of the energy determined when the trial function approximates the true 
wavefunction. 

TABLE I 

Results for the Particle-in-a-Box 

Energies 

Trial function, #,, 
Calculated 

by random walk” 
Expectation value 

<E> for A 

None, #,, = 0 

Sawtooth 
Skewed-sine, b = 0.1 

Skewed-sine, b = 0.02 
Exact, &, = sin(nx/l) 

4.9515 i 0.0626b - 

4.9279 & 0.0108 6 
4.9356 f  0.0025 4.93933 

4.9343 $ 0.0004 4.93499 
4.93480 

0 Computation efforts are approximately equal. In each case about 1000 psips were followed 
through 10,000 time steps. 

1, Probable statistical error, excludes any systematic error. 

VI. HYDROGEN ATOM, WITHOUT #,, 

For later comparisons and to provide a first trial function for successive corrections 
a direct calculation of the wavefunction and energy with &, = 0 was made for the 
hydrogen atom. The problem was specified in atomic units with 3?/2,u = 4 and V = 
--I/P where r is the proton-electron distance. The exact solution is I/ = e@’ with the 
eigenvalue E = -+. 
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The calculation procedure was identical to that described in Ref. [2]. The random 
walk was executed in three dimensions with a time step of 0.010 au. and distance 
steps selected from a set of twenty steps approximating a Gaussian distribution and 
having m = 0.010. Each psip was subjected to multiplication or disappearance 
according to the potential energy corresponding to its electron position. The proba- 
bility of multiplication was [2] 

Pb = exp[-(V- VM)AT] - 1, YC VW, 

and of disappearance was 12) 

Pd = 1 - exp[-(V - Vrer) LIT], V > VW. (21) 

To prevent exceeding the storage capacity of the computer system on multiplication 
of psips with r near zero an average potential energy for 0 c I” < 0.01. was used for 
I’ < 0.01. The reference potential Vrer was adjusted at each step to maintain approx& 
mately 1000 psips in the system. 

An initial period of 10 a.u. was allowed for the system to reach steady-state, This 
was followed by a time span of 50 a.u. for determination of the energy and the psip 
distribution. The sampling error in the energy was estimated from the variation in the 
averages of VYer for five IO-a.u. spans. The distribution of psips for the 50-a.u. span 

400- 
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FIG. 5. Histograms of psip distributions obtained in successive corrections for the B atom. 
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was determined as the number of psips at each time step having r within intervals of 
1 a.u. from 0 to 9 a.u. A tenth interval with r > 9 au. was also used. 

The energy, determined as the average value of V& , was -0.507 & 0.004 a.u. The 
psip distribution obtained is shown at the top of Fig. 5. Since the distribution is that 
for intervals of r rather than for intervals of volume in configuration space it should 
be compared to r2e-r, the exact wavefunction weighted by r2. A comparison indicates 
approximate agreement. 

VII. HYDROGEN ATOM, SUCCESSIVE CORRECTIONS 

The difference method was applied to the case of the hydrogen atom with five succes- 
sive corrections 6 to the initial trial wavefunction J+$, . The first run was that with 
z/o = 0, described above, to generate a first correction 6, . The second run with a 
trial function #r = &, + 6, generated a second correction 6, to yield & = $J,, + 
6, + 6, . The process was repeated to yield after five runs a wavefunction z,G6 = #,, + 
6, + *.- + 6, . The energies obtained directly from the random-walk calculations 
and indirectly from the expectation values of the energy for the trial functions were 
determined for each run. 

The correction 6 to be applied for a succeeding trial function was expressed as a 
simple analytic function giving an approximate fit to the 6 distribution generated in 
each run. The initial correction to z,&, = 0 was fit with the expression & = Z0.s8r. 
Further corrections were fit with expressions of the type 6, = Ae+(l + br + d). 

The calculation procedure was similar to that described in Sec. VI except for the 
additional requirements of the source term and the cancellation of positive and 
negative psips. 

The source term S was obtained in analytic form with use of Eq. (7). Psips were fed 
to the system with probabilities given by the local value of the source term. At each 
time step Nf feed positions were chosen with P in the range 0 to rmax . With the local 
feed rate per unit volume given by S(r) the feed probability at each position chosen 
was given by 

The feed probability consisted in general of an integer n plus a fraction f less than 
unity. Psips having the sign of S were fed at each position as either 11 psips (probability 
1 -f) or IZ + 1 psips (probabilityf). 

Cancellation of psips of opposite sign was carried out for pairs occurring in the 
same region of configuration space, i.e., having similar Y values. The r-space was 
divided into N, - 1 intervals of size Ar beginning at I’ = 0 plus a last region extending 
to infinity. To allow the opportunity for newly-fed psips and their descendants to 
approach equilibrium distributions within the regions the time elapsed since initial 
feed (family age) was followed for all psips. Psips with a family age less than a specified 
age ~~16 were not subjected to cancellation. Pairs of positive and negative psips, each 
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one with family age greater than ~~~~ , occurring in the same interval of r were removed 
From the system. 

The difference calculations were executed with a time step of 0.010 a.u. with a span 
of 10 a.u. to approach steady-state and a span of 50 a.u. for determining energies and 
distributions. The reference potential was adjusted to give a net (positive-negative) 
number of psips of zero and the trial wavefunction was scaled to yield a total of 
approximately 1000 psips. Several combinations of the intewal size do and the mini- 
mum family age for cancellation 70~d were investigated. These included LIP of i a.c. 
for r up to 10 a.u. and 70~ti in the range of 0 to 1 a.u. Results were found insensitive to 
variations in these choices. For the results reported here rlr = 0. ! a.u. in 99 intervals 
up to r = 9.9 a.u. and NoId = 0.1 a.u. 

Figure 5 shows histograms of the psip distributions obtained. These indicate the 
average net number of psips within Y intervals of I a.u. (0.1 a.u. for Run 5). Shown 
also is the equivalent number of psips No , defined as k j” &,r.” dr: for the trial wave- 
function. Althou& the total number of psips remains constant at about iOOG for the 
five runs, the number relative to IV,, and, thus, the relative size of the correction is 
markedly decreased in successive runs. 

The successive trial functions given in analytic form are listed in Tabie II. As 
indicated, Sl was fit by a simple exponential expression. For Runs 2-4 the corrections 
& were adequately fit by the expression z O sgr (1 - 0.33~) with successively smaller 
scaling constants. For Run 5 an exponential term multiplied by a quadratic expression 
in J’ was required. 

TABLE II 

Successive Corrections for the H At.Oni 

RLln 
l-lo. 

1. 
2. 
3. 

4. 

5. 

Trial function 

*o = 0 
+I = e--0.9sr 

2je = ePssT f 0.058 e-“.Bor (1 - 0.331) 

$43 = e--o-r + 0.0624 e-O.*Sr(l - 0.33,) 
Ga = e-“~sar + 0.062480 e-0~99r(1 - 0.33~) 

& = e-“.s8r + 0.062480 e-0.99’(1 - 0.33~) 
+ 0.000002 e-1.2br(l - 2.5 + i”j 

Difference ftinction 
__- 

8, = &LB35r 

6, = 0.055 e-“.99r(l - 0.331) 

6, = 0.0044 e-“-93T (1 - 0.33?) 

6, = 0.000080 e-~.Ty - 0.33r) 

‘s, = 0.000002 e-1=(1 - 2% + i-2) 

Table 111 lists the energies calculated. The sampling error in the value of Vref is 
reduced by about a factor of ten in each run and reaches a value in the fifth run of four 
parts in 10:. The error in the energy as given by the expectation value for a kal 
function is reduced by a factor of about IO2 in each run and reaches a value of four 
parts in 1013. 
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TABLE III 

Energies Calculated for the H Atom” 

RLlll 
IlO. 

Trial 
function 

Random walk 
E = r,..p 

Expectation value 
<E> 

1. Al -0.507 &0.004* - 

2. *I -0.5003 $0.0003 -0.4998 

3. *? -0.49999 ~0.ooo02 -0.49999903 

4. *3 -0.500003 &0.000004 -0.49999999969 

5. $4 -0.49999996 +-0.0000002 -0.5 + 2.3 E-12 

A - -0.5 f  2.1 613 

a Atomic units. 
b Probable statistical error, excludes any systematic error. 

VIII. DISCUSSION 

It is clear that the random-walk method as reformulated is successful in generating 
the difference function 8 for the simple systems treated. Further, the direct calculation 
of 6 rather than 4 itself greatly improves the accuracy of the energy determined by 
reducing both systematic and random (sampling) errors. Wavefunctions and eigen- 
values, both of high accuracy, may be determined in this manner. 

In principle, application of the difference method to more complex systems, re- 
quiring psip movement in a space with a greater number of dimensions, is straight 
forward. No new concepts are required. With energies determined directly from the 
random-walk calculation there are no integrals to evaluate. Only the first and second 
derivatives of the trial wavefunctions are required. 

In practice, application to more complex systems may be limited by the complexity 
of expressions required to represent accurate wavefunctions. As the trial wavefunction 
gains more terms its derivatives gain more terms and the computation effort for 
evaluating the source term S becomes greater. The cancellation of positive and negative 
psips is an essential requirement for successful use of the method. In systems of a 
large number of dimensions cancellation may be infrequent unless allowed to occur 
within relatively large regions. The use of a family age requirement may, however, 
allow large regions to be used without a sacrifice in accuracy. 

Since terms involving inter-electron distances explicitly can be incorporated in 
the trial wavefunctions of a random-walk calculation, the expressions required may 
be much less complex than those of variationa calculations. If this is the case, the 
use of the difference method with successive corrections may be simpler and more 
accurate than use of variational methods. 
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